Abstract

The harmonic oscillator is a powerful model that can appear as a limit case when examining a nonlinear system. A well known fact is that, without driving, the inclusion of a friction term makes the origin of the phase space-which is a fixed point of the system-linearly stable. In this work, we include a telegraph process as perturbation of the oscillator's frequency, for example, to describe the motion of a particle with fluctuating charge gyrating in an external magnetic field. Increasing intensity of this colored noise is capable of changing the quality of the fixed point. To characterize the stability of the system, we use a stability measure that describes the growth of the displacement of the system's phase space position and express it in a closed form. We expand the respective exponent for light friction and low noise intensity and compare both the exact analytic solution and the expansion to numerical values. Our findings allow stability predictions for several physical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call