Abstract
The present work is devoted to the stability and attractivity analysis of a nonlocal delayed reaction–diffusion equation (DRDE) with a non-monotone bistable nonlinearity that describes the population dynamics for a two-stage species with Allee effect. By the idea of relating the dynamics of the nonlinear term to the DRDE and some stability results for the monostable case, we describe some basin of attractions for the DRDE. Additionally, existence of heteroclinic orbits and periodic oscillations are also obtained. Numerical simulations are also given at last to verify our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.