Abstract

We establish a convergence theorem for a class of nonlinear reaction-diffusion equations when the diffusion term is the subdifferential of a convex functional in a class of functionals of the calculus of variations equipped with the Mosco-convergence. The reaction term, which is not globally Lipschitz with respect to the state variable, gives rise to bounded solutions, and cover a wide variety of models. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.