Abstract
A simple, selective, precise, and stability-indicating high-performance thin layer chromatographic method of analysis of Linezolid both as a bulk drug and in formulations was developed and validated in pharmaceutical dosage form. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene–acetone (5:5, v/v). This system was found to give compact spots for Linezolid (Rf value of 0.29 ± 0.01). Linezolid was subjected to acidic, alkali hydrolysis, oxidation, and photodegradation. The degraded products also were well separated from the pure drug. Densitometric analysis of Linezolid was conducted in the absorbance mode at 254 nm. The linear regression data for the calibration plots showed good linear relationship with r2 = 0.997 ± 0.001 in the concentration range of 300–800 ng/spot. The mean value of correlation coefficient, slope, and intercept were 0.998 ± 0.003, 0.15 ± 0.009, and 19.52 ± 1.66 respectively. The method was validated for precision, accuracy, ruggedness, and recovery. The limits of detection and quantification were 20 ng/spot and 50 ng/spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and photo degradation. All the peaks of degraded product were resolved from the standard drug with significantly different Rf values. This indicates that the drug is susceptible to acid–base hydrolysis, oxidation, and photo degradation. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. Because the method could effectively separate the drug from its degradation products, it can be used as a stability indicating one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.