Abstract
A sensitive, selective, precise and stability indicating high-performance thin layer chromatographic method of analysis of clopidogrel bisulphate both as a bulk drug and in formulations was developed and validated in pharmaceutical dosage form. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of carbon tetrachloride–chloroform–acetone (6:4:0.15, v/v/v). This system was found to give compact spots for clopidogrel bisulphate (R f value of 0.30±0.01). Clopidogrel bisulphate was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also the degraded products were well separated from the pure drug. Densitometric analysis of clopidogrel bisulphate was carried out in the absorbance mode at 230 nm. The linear regression data for the calibration plots showed good linear relationship with r 2=0.999±0.001 in the concentration range of 200–1000 ng. The mean value of correlation coefficient, slope and intercept were 0.999±0.001, 0.093±0.011 and 8.83±0.99, respectively. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 40 and 120 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of degraded product were resolved from the standard drug with significantly different R f values. This indicates that the drug is susceptible to acid–base hydrolysis, oxidation and dry heat degradation. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.