Abstract

A zirconium oxynitride (ZON) thin film was deposited onto HT9 steel as a cladding material by a metalorganic chemical vapor deposition (MOCVD) in order to prevent a fuel-clad chemical interaction (FCCI) between a U-10wt% Zr metal fuel and a clad material. X-ray diffraction spectrums indicated that the mixture of structures of zirconium nitride, oxide and carbide in the MOCVD grown ZON thin films. Also, typical equiaxial grain structures were found in plane and cross sectional images of the as-deposited ZON thin films with a thickness range of 250–500nm. A depth profile using auger electron microscopy revealed that carbon and oxygen atoms were decreased in the ZON thin film deposited with hydrogen gas flow. Diffusion couple tests at 800°C for 25hours showed that the as-deposited ZON thin films had low carbon and oxygen content, confirmed by the Energy Dispersive X-ray Spectroscopy, which showed a barrier behavior for FCCI between the metal fuel and the clad. This result suggested that ZON thin film cladding by MOCVD, even with the thickness below the micro-meter level, has a high possibility as an effective FCCI barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.