Abstract

Small-scale renewable energy systems are becoming increasingly popular due to soaring fuel prices and technological advancements that reduce the cost of manufacturing. Solar photovoltaic (PV) and wind turbine (WT) are the most common renewable sources used now. It is well known that these renewable energy sources are intermittent in nature, which impose a challenging to integrate them into the power grid. This paper aims to examine the dynamic behavior of the hybrid PV-WT model under different operating conditions, and the impact of the hybrid PV-WT on the system stability when a fault applied at a point of common coupling (PCC). In this paper, a model of grid connected PV/WT hybrid system is presented. It consists of PV, WT, induction generator, controller and converters. The model is implemented using MATLAB/SIMULINK. Perturb and Observe (P & O) algorithm is used for maximizing the output power from PV array. The fixed speed wind turbine with induction generator is used. This paper shows a good dynamic performance of hybrid PV-WT under different operating conditions. This system has minor impacts on power quality. The transient stability of this system is affected by hybrid PV-WT. The fault clearing time is improved with renewable sources, and become less critical than the system without renewable ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.