Abstract

Stability of power system is an ability of an electric power system that reaches its stable condition after fault happens in its network. The system is unstable when one generator loses its stable synchronism performance. This paper investigates the transient stability of an IEEE 9-bus system during faults that happen in different bus locations. Additionally, the analysis contributes to the integration of the exciter IEEE type-1 for synchronous generator and integration of power system stabilizer (PSS) to improve the power angle stability in the power system. The fault at bus 4 has the highest amplitude in which it increases to 77.58 degrees for the power angle of Synchronous Generators (SGs). The absence of PSS showed that the existing system oscillated and it is unstable. However, the integration of PSS enables the system to damp the oscillations of power angle and reduce the settling time to 5.69 seconds during the fault at bus 4. Moreover, the PSS is connected to SGs through the excitation system to improve the stability of the system in relative power angle of SGs, speed deviation, and electrical power of SGs. Hence, the integration of PSS and excitation system enhances the transient stability of the power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call