Abstract
Equipment recovery passage (ERP) is being widely employed in longwall panel for the purpose of recovering heave mining equipment at the end of mining stage. The stability of the ERP, however, is always difficult to control although powerful supporting structures are employed, which restricts its further promotion. In the present paper, we focused on the ERP’s stability control through reducing the abutment stress imposed on the ERP’s surroundings rather than solely increasing roadway support intensity, based on a rigorous case study in China. First, the dynamic evolution of the abutment stresses, corresponding plastic zone and deformations in the surrounding rock of the ERP were analyzed through a meticulously validated FLAC3D numerical simulation, as the longwall face moved with different velocity. The simulated results indicate that the faster the longwall face moved, the lower the abutment stresses, the narrower the plastic zone and the smaller the deformations were. In terms of these analyses, two suggestions were proposed, including increasing longwall face moving velocity and roof structure optimization, and corresponding technologies were introduced, and potential effect were verified as well. Conclusions and suggestions of this paper might be helpful for increasing the flexibility of the ERP in similar geotechnical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.