Abstract

Lanthanides have a high affinity toward ligands containing donor oxygen atoms, especially amino acids and complexons. The study of the processes of complexation of amino acids with f-element cations provides valuable information for solving problems of supramolecular chemistry, molecular recognition and chiral sensitivity of biological substrates. As a rule, f-elements are not components of biopolymers, but they are spectral label probes, which are important in the bioinorganic chemistry of metals. Quantitative estimation of the stability of complexes is necessary, first of all, to search for an internal connection between the constants themselves and then to find correlations between the stability of complexes and the properties of the complexing agent, the ligand, and the system as a whole. Such correlation dependencies make it possible to calculate a priori, or at least estimate the stability constants of new complexes, and also to better understand the influence of the nature of the chemical bond and the properties of the system as a whole on the formation and stability of complex compounds. In the present work, the complexation of neodymium, lanthanum with L-asparaginat ion and samarium, cerium with L-leucinat ion at 298.15 K and ionic strength values of 0.5 mol/l was studied by potentiometric titration and the stability constants of the complexes formed were determined. The values of the stability constants found allow us to perform rigorous thermodynamic calculations of the equilibria of these amino acids in salt solutions. The data obtained, in particular, can be used to reliably interpret the results of calorimetric studies of the complexation of lanthanides with the participation of the studied amino acids.Forcitation:Lytkin A.I., Chernyavskaya N.V., Smirnova D.K. Stability constants of L-asparagine and L-leucine complexes with some lanthanide in aqueous solutions at 298.15 K. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 37-41

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call