Abstract

Producing solid-state formulations of biologics remains a daunting task despite the prevalent use of lyophilization and spray drying technologies in the biopharmaceutical industry. The challenges include protein stability (temperature stresses), high capital costs, particle design/controllability, shortened processing times and manufacturing considerations (scalability, yield improvements, aseptic operation, etc.). Thus, scientists/engineers are constantly working to improve existing methodologies and exploring novel dehydration/powder-forming technologies. Microglassification™ is a dehydration technology that uses solvent extraction to rapidly dehydrate protein formulations at ambient temperatures, eliminating the temperature stress experienced by biologics in traditional lyophilization and spray drying methods. The process results in microparticles that are spherical, dense, and chemically stable. In this study, we compared the molecular stability of a monoclonal antibody formulation processed by lyophilization to the same formulation processed using Microglassification™. Both powders were placed on stability for 3 months at 40 °C and 6 months at 25 °C. Both dehydration methods showed similar chemical stability, including percent monomer, charge variants, and antigen binding. These results show that Microglassification™ is viable for the production of stable solid-state monoclonal antibody formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call