Abstract

This study investigated the dynamics and control of a nonlinear suspension system using a quarter-car model that is forced by the road profile. Bifurcation analysis used to characterize nonlinear dynamic behavior revealed codimension-two bifurcation and homoclinic orbits. The nonlinear dynamics were determined using bifurcation diagrams, phase portraits, Poincaré maps, frequency spectra, and Lyapunov exponents. The Lyapunov exponent was used to identify the onset of chaotic motion. Finally, state feedback control was used to prevent chaotic motion. The effectiveness of the proposed control method was determined via numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.