Abstract

ABSTRACTThis paper investigates the problem of quantized feedback control for networked control systems (NCSs) with time‐varying delays and time‐varying sampling intervals, wherein the physical plant is a continuous‐time, and the control input is a discrete‐time signal. By using an input delay approach and a sector bound method, the network induced delays, the signal quantization and sampling intervals are presented in one framework in the case of the state and the control input by quantization in a logarithmic form. We exploit a novel Lyapunov functional with discontinuity, taking full advantage of the NCS characteristic information including the bounds of delays, the bounds of sampling intervals and quantization parameters. In addition, it has been shown that the Lyapunov functional is decreased at the jump instants. Furthermore, we use the Leibniz‐Newton formula and free‐weighting matrix method to obtain the stability analysis and stabilization conditions which are dependent on the NCS characteristic information. The proposed stability analysis and stabilizing controller design conditions can be presented in term of linear matrix inequalities, which have less conservativeness and less computational complexity. Four examples demonstrate the effectiveness of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.