Abstract

Solution processed zinc oxide thin film transistors (TFTs) were investigated for spacial identification of instability inducing electronic trap states by utilizing surface-to-active-channel distance dependent analysis. It is shown that the performance and stability of zinc oxide TFTs deposited by spray pyrolysis strongly depend on the surface-to-channel distance and herewith on the film thickness in the investigated regime from 1 nm to 30 nm. In thin layers, the charge transport process is dominated by the number of percolation paths and near channel trapping processes due to coulomb interactions with surface charges. This leads to a high thickness of 3 nm for the percolation threshold. As soon as a closed layer is formed and the charge separation of 7 nm between surface and active channel is exceeded, bulk properties become more dominant. A maximum linear mobility of 11cm2 V−1 s−1 and an on-set voltage of 2 V were obtained for a film thickness of 30 nm. An increase of the film thickness from 10 nm to 30 nm leads to a reduction in the trap rate by one order of magnitude from 4.3 × 108 cm−2 s−1 to 3.7 × 107 cm−2 s−1. Due to this, the bias stress stability and the long term storage stability were found to improve significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.