Abstract

Resveratrol is a highly biologically active phytoalexin, found in many plant materials that are common elements of the human diet, such as grapes, nuts, and red wine. The therapeutic or disease preventative potential of this natural polyphenolic antioxidant has been limited in part due to its poor aqueous solubility and low oral bioavailability. We hypothesized that solid dispersion of resveratrol (Res) in cellulose derivative matrices might afford amorphous dispersions, from which supersaturated Res solutions would be produced in the human gastrointestinal (GI) tract, resulting in higher Res bioavailability. We carried out structure–property studies employing cellulose esters with a range of physical characteristics but possessing features suitable for use in amorphous solid dispersions: carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate adipate propionate (CAAdP). The cellulose derivative results were compared with those of a negative control, pure crystalline Res, and a positive control, Res/poly(vinylpyrrolidinone) (PVP). Solid dispersions were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) of solid dispersions. HPMCAS and PVP solid dispersions afforded faster and more complete Res release at pH 6.8; however Res is also released from PVP matrices at pH 1.2. The carboxyl-containing cellulose derivatives release Res to only a small extent at pH 1.2. This combination of solution and solid phase stabilization against crystallization, and pH-triggered drug release makes these cellulose esters attractive candidates for Res bioavailability enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.