Abstract

We consider non-interacting particles subject to a fixed external potential $V$ and a self-generated magnetic field $B$. The total energy includes the field energy $\beta \int B^2$ and we minimize over all particle states and magnetic fields. In the case of spin-$1/2$ particles this minimization leads to the coupled Maxwell-Pauli system. The parameter $\beta$ tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and the semiclassical asymptotics, $h\to0$, of the total ground state energy $E(\beta, h, V)$. The relevant parameter measuring the field strength in the semiclassical limit is $\kappa=\beta h$. We are not able to give the exact leading order semiclassical asymptotics uniformly in $\kappa$ or even for fixed $\kappa$. We do however give upper and lower bounds on $E$ with almost matching dependence on $\kappa$. In the simultaneous limit $h\to0$ and $\kappa\to\infty$ we show that the standard non-magnetic Weyl asymptotics holds. The same result also holds for the spinless case, i.e. where the Pauli operator is replaced by the Schrödinger operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.