Abstract

Courant’s theorem implies that the number of nodal domains of a Laplace eigenfunction is controlled by the corresponding eigenvalue. Over the years, there have been various attempts to find an appropriate generalization of this statement in different directions. We propose a new take on this problem using ideas from topological data analysis. We show that if one counts the nodal domains in a coarse way, basically ignoring small oscillations, Courant’s theorem extends to linear combinations of eigenfunctions, to their products, to other operators, and to higher topological invariants of nodal sets. We also obtain a coarse version of the Bézout estimate for common zeros of linear combinations of eigenfunctions. We show that our results are essentially sharp and that the coarse count is necessary, since these extensions fail in general for the standard count. Our approach combines multiscale polynomial approximation in Sobolev spaces with new results in the theory of persistence modules and barcodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.