Abstract

This paper presents a stability and robustness analysis of a nonlinear control system for the autonomous airship of the AURORA project. A Dynamic Inversion controller is implemented with desired dynamics given by a linear optimal compensator. The stability analysis of the nonlinear system is done applying Lyapunov’s stability theory. Robustness tests are performed in order to verify the nonlinear controller performance in face of disturbances and model parameters errors. The results obtained illustrate the overall system robustness, and point at the most sensitive model parameters of the AURORA airship, for which a more careful identification/determination should be carried.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call