Abstract

For a class of MIMO systems with input and output unmodeled dynamics, bounded disturbances and any relative degree, using the idea of Kp = L 2 D 2 S 2 factorization, the design and analysis of robust direct model reference adaptive control are further investigated in this article. By establishing the Lp and L 2δ relationship properties between the input and output, multivariable swapping lemmas and relating all the signals in the closed-loop system with the normalizing signal, stability and robustness of adaptive system are analyzed rigorously. Compared with the existing results, the proof procedure is more compact and simple. A simulation example verifies the effectiveness of the control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.