Abstract

The numerical solution of hyperbolic conservation laws requires algorithms with upwind characteristics. Conventional methods such as the numerical difference method can realize this characteristic by constructing special distributions of nodes. However, there are still no reports on how to construct algorithms with upwind characteristics through wavelet theory. To solve this problem, a system of high-order and stable wavelet collocation upwind schemes was successfully proposed by constructing interpolation wavelets with specific symmetry and smoothness. The effects of the characteristics of the scaling functions on the schemes were explored based on numerical tests and Fourier analysis. The numerical results revealed that the stability of the constructed scheme is affected by the smoothness order, N, and the asymmetry of the scaling function. The dissipation analysis suggested that schemes with N ∈ even have negative dissipation coefficients, leading to unstable behaviors. Only scaling functions with N ∈ odd and a bias magnitude of 1 can be used to construct stable upwind schemes due to the non-negative dissipation coefficients. Typical numerical examples verified the effectiveness of the proposed method, which is proved to have high accuracy and efficiency in solving high-speed flow problems with multi-scale smooth structures and discontinuities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call