Abstract

Salt stress induces the degradation of 14-3-3 proteins, and affects the localization of 14-3-3 λ. Both the modulation of 14-3-3 protein stability and the subcellular localization of these proteins are involved in salt tolerance in plants. Salt tolerance in plants is regulated by multiple signaling pathways, including the salt overly sensitive (SOS) pathway, of which the SOS2 protein is a key component. SOS2 is activated under salt stress to enhance salt tolerance in plants. We previously identified 14-3-3 λ and κ as important regulators of salt tolerance. Both proteins interact with SOS2 to inhibit its kinase activity under normal growth conditions. In response to salt stress, 14-3-3 proteins dissociate from SOS2, releasing its activity and activating the SOS pathway to confer salt tolerance (Zhou et al. Plant Cell 26:1166-1182, 2014). Here we report that salt stress promotes the degradation of 14-3-3 λ and κ, at least in part via the actions of SOS3-like calcium binding protein 8/calcineurin-B-like10, and also decreases the plasma membrane (PM) localization of 14-3-3 λ. Salt stress also partially represses the interaction of SOS2 and 14-3-3 λ at the PM, but activates PM-localized SOS2. Together, these results suggest that, in plants, both the modulation of 14-3-3 stability and the subcellular localization of these proteins in response to salt stress are important for SOS2 activation and salt tolerance. These data provide new insights into the biological roles of 14-3-3 proteins in modulating salt tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.