Abstract
We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple-scale technique, a (3 + 1)-dimensional coupled set of nonlinear Schrödinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane-wave perturbation. We show that the wave packets, though stable to the parallel modulation, become unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable or unstable in the ultrarelativistic limit. Numerical simulation of the coupled equations reveals that a steady-state solution of the wave amplitude exists together with the formation of a localized structure in (2 + 1) dimensions. However, in the (3 + 1)-dimensional evolution, a Gaussian wave beam self-focuses after interaction and blows up in a finite time. The latter is, however, arrested when the dispersion predominates over the nonlinearities. This occurs when the Coulomb coupling strength is higher or a choice of obliqueness of modulation, or a wavelength of excitation is different. Possible application of our results to the interior as well as in an outer mantle of white dwarfs are discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have