Abstract

The maximum time-step size of the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method is not limited by the Courant–Friedrich–Levy (CFL) stability condition. However, the numerical-dispersion error of the ADI-FDTD method is much greater than that of Yee's FDTD method. In this paper, the numerical dispersion is improved by approximating the spatial derivatives using cubic spline Battle–Lemarie scaling functions and the high-order centered differences. The stability condition and the numerical-dispersion relations are derived using the Fourier series method and validated by a numerical simulation. The new scheme is unconditionally stable and the numerical dispersion error can be reduced to the limit of the conventional ADI-FDTD method with the 6th-order centered difference. © 2005 Wiley Periodicals, Inc. Microwave Opt Technol Lett 45: 43–46, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.20717

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.