Abstract

Abstract The Kirchhoff equation was proposed in 1883 by Kirchhoff [Vorlesungen über Mechanik, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathematical physics,” in Contemporary Developments in Continuum Mechanics and PDE’s, G. M. de la Penha, and L. A. Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff equation in arbitrary dimension with external force term which was written as ∂ 2 u ∂ t 2 + a + b ∫ Ω | ∇ u | 2 d x Δ u = f ( x , u ) , $\frac{{\partial }^{2}u}{\partial {t}^{2}}+\left(a+b{\int }_{{\Omega}}\vert \nabla u{\vert }^{2}\mathrm{d}x\right){\Delta}u=f\left(x,u\right),$ where Δ = − ∑ ∂ 2 ∂ x i 2 ${\Delta}=-\sum \frac{{\partial }^{2}}{\partial {x}_{i}^{2}}$ is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely related stationary version of this equation, in the case of closed manifolds, when u is vector valued and when f is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.