Abstract

In this paper we develop an abstract theory for stability and convergence of mixed discontinuous finite element methods for second-order partial differential problems. This theory is then applied to various examples, with an emphasis on different combinations of mixed finite element spaces. Elliptic, parabolic, and convection-dominated diffusion problems are considered. The examples include classical mixed finite element methods in the discontinuous setting, local discontinuous Galerkin methods, and their penalized (stablized) versions. For the convection-dominated diffusion problems, a characteristics-based approach is combined with the mixed discontinuous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.