Abstract

We study the stable behaviour of discrete dynamical systems where the map is convex and monotone with respect to the standard positive cone. The notion of tangential stability for fixed points and periodic points is introduced, which is weaker than Lyapunov stability. Among others we show that the set of tangentially stable fixed points is isomorphic to a convex inf-semilattice, and a criterion is given for the existence of a unique tangentially stable fixed point. We also show that periods of tangentially stable periodic points are orders of permutations on $n$ letters, where $n$ is the dimension of the underlying space, and a sufficient condition for global convergence to periodic orbits is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.