Abstract
The purpose of this paper is devoted to studying the implicit–explicit (IMEX) one-leg methods for stiff delay differential equations (DDEs) which can be split into the stiff and nonstiff parts. IMEX one-leg methods are composed of implicit one-leg methods for the stiff part and explicit one-leg methods for the nonstiff part. We prove that if the IMEX one-leg methods is consistent of order 2 for the ordinary differential equations, and the implicit one-leg method is A-stable, then the IMEX one-leg methods for stiff DDEs are stable and convergent with order 2. Some numerical examples are given to verify the validity of the obtained theoretical results and the effectiveness of the presented methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.