Abstract
Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit) method for solving the Euler equations that posses strong nonlinear heat conduction and very stiff source terms (Radiation hydrodynamics). This study essentially summarizes our previous and current research related to this subject (Kadioglu & Knoll, 2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009; Kadioglu, Knoll, Sussman M 1995; Bates et al., 2001; Kadioglu & Knoll, 2010; 2011; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009; Khan & Liu, 1994; Kim & Moin, 1985; Lowrie et al., 1999; Ruuth, 1995). These methods are particularly attractive when dealing with physical systems that consist of multiple physics (multi-physics problems such as coupling of neutron dynamics to thermal-hydrolic or to thermal-mechanics in reactors) or fluid dynamics problems that exhibit multiple time scales such as advection-diffusion, reaction-diffusion, or advection-diffusion-reaction problems. In general, governing equations for these kinds of systems consist of stiff and non-stiff terms. This poses numerical challenges in regards to time integrations, since most of the temporal numerical methods are designed specific for either stiff or non-stiff problems. Numerical methods that can handle both physical behaviors are often referred to as IMEX methods. A typical IMEX method isolates the stiff and non-stiff parts of the governing system and employs an explicit discretization strategy that solves the non-stiff part and an implicit technique that solves the stiff part of the problem. This standard IMEX approach can be summarized by considering a simple prototype model. Let us consider the following scalar model ut = f (u) + g(u), (1)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.