Abstract

In this paper, we consider the stability and convergence of numerical discretizations of the Black–Scholes partial differential equation (PDE) when complemented with the popular linear boundary condition (LBC). This condition states that the second derivative of the option value vanishes when the underlying asset price gets large and is often applied in the actual numerical solution of PDEs in finance. To our knowledge, the only theoretical stability result in the literature up to now pertinent to the LBC was obtained by Windcliff et al. (2004, Analysis of the stability of the linear boundary condition for the Black–Scholes equation, J. Comput. Finance, 8, 65–92) who showed that for a common discretization, a necessary eigenvalue condition for stability holds. In this paper, we shall present sufficient conditions for stability and convergence when the LBC is employed. We deal with finite difference discretizations in the spatial (asset) variable and a subsequent implicit discretization in time. As a main result, we prove that even though the maximum norm of etM (t≥0) can grow with the dimension of the semidiscrete matrix M, this generally does not impair the convergence behaviour of the numerical discretizations. Our theoretical results are illustrated by ample numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.