Abstract
This study aimed to enhance the stability and response speed of a passive stabilized double-wing flapping micro air vehicle (FMAV) by implementing a feedback-controlled biomimetic tail. A model for flapping wings accurately calculated the lift force with only a 2.4% error compared to the experimental data. Experimental tests established the relationship between control torque and tail area, swing angle, and wing-tail spacing. A stability model for the double-wing FMAV was developed, incorporating stabilizing sails. Linearization of the hovering state facilitated the design of a simulation controller to improve response speed. By adjusting the feedback loops of velocity, angle, and angular velocity, the tail controller reduced the angle simulation response time from 4 s to 0.1 s and the velocity response time from 5.64 s to 0.1 s. In take-off experiments, a passive stabilized prototype with an adjustable tail angle exhibited enhanced flight stability compared to fixed tails, reducing standard deviation by 72.96% at a 0° take-off angle and 56.85% at a 5° take-off angle. The control axis standard deviation decreased by 38.06% compared to the passive stability axis, confirming the effectiveness of the designed tail angle controller in reducing angular deflection and improving flight stability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have