Abstract
This paper is concerned with a Lotka–Volterra competition system with multiple delays. Firstly, we investigate the existence and stability of the positive equilibrium. In particular, we find that the system has Hopf bifurcation at the positive equilibrium, whereas this singularity does not occur for the corresponding system with two delays when interspecies competition is weaker than intraspecies competition. Secondly, we analyze the stability of the periodic solutions by reducing the original system on the center manifold. Finally, some numerical examples are given to verify our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.