Abstract
Abstract In this paper, a competitive Lotka–Volterra system with three delays is investigated. By choosing the sum τ of three delays as a bifurcation parameter, we show that in the above system, Hopf bifurcation at the positive equilibrium can occur as τ crosses some critical values. And we obtain the formulae determining direction of Hopf bifurcation and stability of the bifurcating periodic solutions by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.