Abstract

Stability and bifurcation behaviors for a model of simply supported functionally graded materials rectangular plate subjected to the transversal and in-plane excitations are studied by means of combination of analytical and numerical methods. The resonant case considered here is 1 : 1 internal resonances and primary parametric resonance. Two types of degenerated equilibrium points are studied in detail, which are characterized by a double zero and two negative eigenvalues, and a double zero and a pair of pure imaginary eigenvalues. For each case, the stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of the system parameters which may lead to Hopf bifurcation and 2D torus. With both analytical and numerical methods, bifurcation behaviors on damping parameters and detuning parameters are studied, respectively. A time integration scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.