Abstract

The global bifurcations and multi-pulse orbits of an aero-thermo-elastic functionally graded material (FGM) truncated conical shell under complex loads are investigated with the case of 1:2 internal resonance and primary parametric resonance. The method of multiple scales is utilized to obtain the averaged equations. Based on the averaged equations obtained, the normal form theory is employed to find the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method developed by Haller and Wiggins is used to analyze the multi-pulse homoclinic bifurcations and chaotic dynamics of the FGM truncated conical shell. The analytical results obtained here indicate that there exist the multi-pulse Shilnikov-type homoclinic orbits for the resonant case which may result in chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. The diagrams show a gradual breakup of the homoclinic tree in the system as the dissipation factor is increased. Numerical simulations are presented to illustrate that for the FGM truncated conical shell, the multi-pulse Shilnikov-type chaotic motions can occur. The influence of the structural-damping, the aerodynamic-damping, and the in-plane and transverse excitations on the system dynamic behaviors is also discussed by numerical simulations. The results obtained here mean the existence of chaos in the sense of the Smale horseshoes for the FGM truncated conical shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.