Abstract
In this paper, we present and analyze a spatio-temporal eco-epidemiological model of a prey predator system where prey population is infected with a disease. The prey population is divided into two categories, susceptible and infected. The susceptible prey is assumed to grow logistically in the absence of disease and predation. The predator population follows the modified Leslie-Gower dynamics and predates both the susceptible and infected prey population with Beddington-DeAngelis and Holling type II functional responses, respectively. The boundedness of solutions, existence and stability conditions of the biologically feasible equilibrium points of the system both in the absence and presence of diffusion are discussed. It is found that the disease can be eradicated if the rate of transmission of the disease is less than the death rate of the infected prey. The system undergoes a transcritical and pitchfork bifurcation at the Disease Free Equilibrium Point when the prey infection rate crosses a certain threshold value. Hopf bifurcation analysis is also carried out in the absence of diffusion, which shows the existence of periodic solution of the system around the Disease Free Equilibrium Point and the Endemic Equilibrium Point when the ratio of the rate of intrinsic growth rate of predator to prey crosses a certain threshold value. The system remains locally asymptotically stable in the presence of diffusion around the disease free equilibrium point once it is locally asymptotically stable in the absence of diffusion. The Analytical results show that the effect of diffusion can be managed by appropriately choosing conditions on the parameters of the local interaction of the system. Numerical simulations are carried out to validate our analytical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.