Abstract

It is shown that stability of the celebrated MaxWeight or back pressure policies is a consequence of the following interpretation: either policy is myopic with respect to a surrogate value function of a very special form, in which the “marginal disutility” at a buffer vanishes for a vanishingly small buffer population. This observation motivates the $h$-MaxWeight policy, defined for a wide class of functions $h$. These policies share many of the attractive properties of the MaxWeight policy as follows: (i) Arrival rate data is not required in the policy. (ii) Under a variety of general conditions, the policy is stabilizing when $h$ is a perturbation of a monotone linear function, a monotone quadratic, or a monotone Lyapunov function for the fluid model. (iii) A perturbation of the relative value function for a workload relaxation gives rise to a myopic policy that is approximately average-cost optimal in heavy traffic, with logarithmic regret. The first results are obtained for a general Markovian network model. Asymptotic optimality is established for a general Markovian scheduling model with a single bottleneck, and with homogeneous servers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.