Abstract

In this paper, the differential quadrature method is used to solve dynamic problems governed by second-order ordinary differential equations in time. The Legendre, Radau, Chebyshev, Chebyshev–Gauss–Lobatto and uniformly spaced sampling grid points are considered. Besides, two approaches using the conventional and modified differential quadrature rules to impose the initial conditions are also investigated. The stability and accuracy properties are studied by evaluating the spectral radii and truncation errors of the resultant numerical amplification matrices. It is found that higher-order accurate solutions can be obtained at the end of a time step if the Gauss and Radau sampling grid points are used. However, the conventional approach to impose the initial conditions in general only gives conditionally stable time step integration algorithms. Unconditionally stable algorithms can be obtained if the modified differential quadrature rule is used. Unfortunately, the commonly used Chebyshev–Gauss–Lobatto sampling grid points would not generate unconditionally stable algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.