Abstract
In this paper, the stability problem of stochastic memristor-based recurrent neural networks with mixed time-varying delays is investigated. Sufficient conditions are established in terms of linear matrix inequalities which can guarantee that the stochastic memristor-based recurrent neural networks are asymptotically stable and exponentially stable in the mean square, respectively. Two examples are given to demonstrate the effectiveness of the obtained results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have