Abstract

We examine the linear stability of various configurations in Bose-Einstein condensates with steplike sonic horizons. These configurations are chosen in analogy with gravitational systems with a black hole horizon, a white hole horizon, and a combination of both. We discuss the role of different boundary conditions in this stability analysis, paying special attention to their meaning in gravitational terms. We highlight that the stability of a given configuration, not only depends on its specific geometry, but especially on these boundary conditions. Under boundary conditions directly extrapolated from those in standard general relativity, black hole configurations, white hole configurations, and the combination of both into a black hole-white hole configuration are shown to be stable. However, we show that under other (less stringent) boundary conditions, configurations with a single black hole horizon remain stable, whereas white hole and black hole-white hole configurations develop instabilities associated to the presence of the sonic horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call