Abstract

This paper proposes a general method for the stability analysis and parameter optimization of milling processes with periodic spindle speed variation (SSV). With the aid of Fourier series, the time-variant spindle speeds of different periodic modulation schemes are unified into one framework. Then the time-varying delay is derived implicitly and calculated efficiently using an accurate ordinary differential equation (ODE) based algorithm. After incorporating the unified spindle speed and time delay into the dynamic model, a Floquet theory based variable-step numerical integration method (VNIM) is presented for the stability analysis of variable spindle speed milling processes. By comparison with other methods, such as the semi-discretization method and the constant-step numerical integration method, the proposed method has the advantages of high computational accuracy and efficiency. Finally, different spindle speed modulation schemes are compared and the modulation parameters are optimized with the aid of three-dimensional stability charts obtained using the proposed VNIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.