Abstract
The gas metal arc welding is a complex chaotic dynamic process. To study the relationship between arc electrical signal and welding stability, the multi-scale entropy method was introduced to analyze the current signals under different welding process parameters. Under the short-circuiting droplet transition mode, the larger shielding gas flow rate led to, the more stable welding and the smaller amplitude of multi-scale entropy curves. When the welding current parameter increased gradually, the droplet transition mode changed, and the amplitude of multi-scale entropy curves increased. As the welding voltage rose, the droplet transfer frequency decreased and the multi-scale entropy increased. Furthermore, the four-class prediction of welding forming quality was studied by combining with the genetic algorithm-based support vector machine (GA-SVM). The multi-scale entropy distribution was closely related to the type and stability of short-circuiting transfer in the welding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.