Abstract

One of the crucial factors that has gained widespread popularity during the tunnelling construction process is the face stability of tunnel that mainly depends upon the support pressure to be applied at the face of tunnel against the overburden pressure and surcharge loading acting on the earth surface. In this study, stability of different cross sections of tunnels has been investigated in cohesionless soil (loose and medium dense sand) using the Finite Element Analysis software Plaxis 2D V20. Tunnel having cross sectional dimension B as width, D as height positioned at a depth H from the surface of ground. Due to the overburden pressure acting on the face of the tunnel, a suitable uniform compressive pressure is applied at the tunnel periphery in form of lining or anchorage system against the collapse. Variation of deflection at periphery of tunnel is presented for different combinations of H/D and Ф (angle of internal friction of soil), and lining thickness. It is observed that at a particular lining thickness with the increase in H/D, the displacement at the crown in tunnel increases and this could be resisted by increasing the lining thickness. The crown deflection of circular tunnel at particular H/D, lining thickness and Ф was less as compared to semi-circular and square tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.