Abstract
In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties, this paper delivers a new computation framework for conducting reliability-based design (RBD) of shallow tunnel face stability, utilizing a simplified inverse first-order reliability method (FORM). The limit state functions defining tunnel face stability are established for both collapse and blow-out modes of the tunnel face failure, respectively, and the deterministic results of the tunnel face support pressure are obtained through three-dimensional finite element limit analysis (FELA). Because the inverse reliability method can directly capture the design support pressure according to prescribed target reliability index, the computational cost for probabilistic design of tunnel face stability is greatly reduced. By comparison with Monte Carlo simulation results, the accuracy and feasibility of the proposed method are verified. Further, this study presents a series of reliability-based design charts for vividly understanding the limit support pressure on tunnel face in both cohesionless (sandy) soil and cohesive soil stratums, and their optimal support pressure ranges are highlighted. The results show that in the case of sandy soil stratum, the blowout failure of tunnel face is extremely unlikely, whereas the collapse is the only possible failure mode. The parametric study of various geotechnical uncertainties also reveals that ignoring the potential correlation between soil shear strength parameters will lead to over-designed support pressure, and the coefficient of variation of internal friction angle has a greater influence on the tunnel face failure probability than that of the cohesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.