Abstract

This paper deals with the convergence and stability properties of block boundary value methods (BBVMs) for the neutral pantograph equation. Due to its unbounded time lags and limited computer memory, a change in the independent variable is used to transform a pantograph equation into a non-autonomous differential equation with a constant delay but variable coefficients. It is shown under the classical Lipschitz condition that a BBVM is convergent of order p if the underlying boundary value method is consistent with order p. Furthermore, it is proved under a certain condition that BBVMs can preserve the asymptotic stability of exact solutions for the neutral pantograph equation. Meanwhile, some numerical experiments are given to confirm the main conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.