Abstract

In this paper, a class of block boundary value methods (BBVMs) for the initial value problems of delay differential equations are suggested. It is proven under the classical Lipschitz condition that a BBVM is convergent of order p if it is consistent of order p. Several linear stability criteria for the BBVMs are derived. Numerical experiments further confirm the convergence and the effectiveness of the methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.