Abstract

This paper presents the stability simulation results of two equivalent aggregated offshore wind farms (OWFs) based on doubly-fed induction generator fed to two power grids through a hybrid multi-infeed high voltage dc (HVdc) system. The hybrid multi-infeed HVdc system consists of a line-commutated converter (LCC)-based HVdc link and a voltage-source converter-based HVdc link. A static synchronous compensator (STATCOM) is connected at the rectifier station of the LCC-based HVdc link. A unified approach using a pole-assignment approach based on a modal control theory is employed to design the damping controllers for the two HVdc links, respectively. Steady-state results under different wind speeds of the two OWFs are carried out. Comparative dynamic responses of the studied system with and without the designed damping controllers for the two HVdc links under wind-speed changes are also achieved. Comparative transient simulations of the studied system with and without the STATCOM subject to a three-phase fault are also performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.