Abstract
The study presents model-based mechanism of nonlinear cutting tool vibration in turning process and the strategy of improving cutting process stability by suppressing machine tool vibration. The approach used is based on the closed-loop feedback control system with the help of electro–magneto–rheological damper. A machine tool vibration signal generated by an accelerometer is fed back to the coil of a damper after suitable amplification. The damper, attached under the tool holder, generates counter forces to suppress the vibration after being excited by the signal in terms of current. The study also discusses the use of transfer function approach for the development of a mathematical model and adaptively controlling the process dynamics of the turning process. The purpose of developing such mechanism is to stabilize the machining process with respect to the dynamic uncut chip thickness responsible for the type-II regenerative effect. The state-space model used in this study successfully checked the adequacy of the model through controllability and observability matrices. The eigenvalue and eigenvector have confirmed the stability of the system more accurately. The characteristic of the stability lobe chart is discussed for the present model-based mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have