Abstract

We present a study of the adsorption and diffusion of CH₄, CO₂, and H₂ molecules in clathrate hydrates using ab initio van der Waals density functional formalism [M. Dion, Phys. Rev. Lett. 92, 246401 (2004)10.1103/PhysRevLett.92.246401]. We find that the adsorption energy is dominated by van der Waals interactions and that, without them, gas hydrates would not be stable. We calculate the maximum adsorption capacity as well as the maximum hydrocarbon size that can be adsorbed. The relaxation of the host lattice is essential for a good description of the diffusion activation energies, which are estimated to be of the order of 0.2, 0.4, and 1.0 eV for H₂, CO₂, and CH₄, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.