Abstract
Stability constants (KML) of 1 : 1 benzo-15-crown-5 (B15C5) complexes with alkali metal ions were conductometrically measured in water at 25°C. Transfer activity coefficients of B15C5 and 15-crown-5 (15C5) from water to polar nonaqueous solvents were determined at 25°C. By using these data and the literature values, transfer activity coefficients of the B15C5 and 15C5 complexes with alkali metal ions from water to the polar nonaqueous solvents were calculated to study the solute-solvent interaction of the crown ether complexes. The stability of the B15C5 complex is lower in water than in any other nonaqueous solvent. The KML value for B15C5 is always smaller than the corresponding K ML value for 15C5. The interaction of the B15C5 or the 15C5 complex with the solvents depends on the alkali metal ion in the crown cavity. All the B15C5 and 15C5 complexes undergo hydrophobic hydration, which is particularly stronger for the B15C5 complexes with Na+ and K+. The unexpectedly lowest stability of the B15C5- or the 15C5-alkali metal ion complex in water among all the solvents is caused by the hydrogen bonding between ether oxygen atoms of uncomplexed B15C5 or 15C5 and water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have