Abstract

In order to save the usage of system resources and adapt the variation of plant state, this study first proposes a novel stochastic-sampling-based adaptive event-triggered scheme (AETS). Second, in the framework of time-delay systems, the closed-loop control system is modelled as a class of delayed stochastic systems where time-delay is distributed in some intervals with probability. Then, by employing stochastic analysis tool and Lyapunov stability theory, a stability criterion for this class of delayed stochastic systems is established to ensure that the system possesses stochastically asymptotic stability with an H ∞ disturbance attenuation performance. Also, a co-design of parameter matrices of the state-feedback controller and the stochastic-sampling-based AETS is implemented. Third, based on the obtained co-design condition, a convex optimisation algorithm for the tradeoffs between disturbance attenuation performance and resource utilisation of the closed-loop control system is further developed. Finally, the effectiveness and feasibility of the proposed control strategy are illustrated by two numerical examples of adaptive event-triggered control for networked control systems under stochastic sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.